Abstract Goerss-Hopkins theory

نویسندگان

چکیده

We present an abstract version of Goerss-Hopkins theory in the setting a prestable ?-category equipped with suitable periodicity operator. In case synthetic spectra, this yields obstructions to realizing comodule algebra as homology commutative ring spectrum, recovering results Goerss and Hopkins.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hopkins’ Picard Groups for the Prime 3 and Chromatic Level 2 Paul Goerss, Hans-werner Henn, Mark Mahowald and Charles Rezk

We give a calculation of Picard groups Pic2 of K(2)-local invertible spectra and Pic(L2) of E(2)-local invertible spectra, both at the prime 3. The main contribution of this paper is to calculation the subgroup κ2 of invertible spectra X with (E2)∗X ∼= (E2)∗S as continuous modules over the Morava stabilizer group G2.

متن کامل

Reader-Response Theory and Criticism | The Johns Hopkins Guide to Literary Theory and Criticism

Reader-response criticism maintains that the interpretive activities of readers, rather than the author’s intention or the text’s structure, explain a text’s significance and aesthetic value. Biographical accounts of how a writer responds to his or her critics initiated this kind of criticism. That is, since a writer may respond to commentary provided by friends, reviewers, or critics, biograph...

متن کامل

Algebraic K-theory and Abstract Homotopy Theory

We decompose the K-theory space of a Waldhausen category in terms of its Dwyer-Kan simplicial localization. This leads to a criterion for functors to induce equivalences of K-theory spectra that generalizes and explains many of the criteria appearing in the literature. We show that under mild hypotheses, a weakly exact functor that induces an equivalence of homotopy categories induces an equiva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.108098